	[bookmark: _GoBack]
	Git reflog
	TeamForge
Git Integration with ‘History Protect’

	Accessibility
	Requires direct access to file system on server where ‘blessed Git repository’ is hosted which is very unlikely in huge organizations and will keep the server administrators busy
	‘Self –Service’ approach. Users with appropriate permissions in TeamForge can find out/resurrect deleted/rewritten branches by themselves, decreasing work load of server administrators.
Gerrit Administrators can also permanently delete selected branches/tags.

	Signal-to- Noise Ratio
	reflog records <all> changes in the repository
· Any push (also ordinary fast forward)
· Any merge
· Any Branch creation/deletion
· Any Tag creation / deletion
Finding out about history rewrites/deleted branches is like searching for a needle in a haystack
	History Protect only reports
· Deleted branches/tags
· History rewrites (non fast forward pushes)

	Notification
	 No notification
	· Email to Gerrit Administrators
· Audit log entry whenever branch/tags gets
· Deleted
· Re-written (non fast forward)
· Resurrected
· Permanently deleted

	Ease of use
	· Only manually configurable by administrator having file system access
· To be configured for each and every repository
· Restoring requires running git commands on server
	· Pre-configured in TeamForge/Gerrit
· Configurable for all repositories by setting site-wide config option or on a per repository basis
· User with appropriate permission can restore history using Gerrit WebUI / Git client

	Protection against object pruning/reflog expiration
	RefLog expiration and gc pruning settings have to be manually configured by server administrator. Only possibility to not lose commits no longer referenced in a branch is to set both values to <unlimited> which will consume huge amounts of disk space, slows down garbage collection and does not allow to permanently delete specific commits (all or nothing).
	Preserved commits will never pruned by garbage collection unless permanently removed using Gerrit Web UI.
No need to keep a large ref log. Garbage collection will run faster since all commits are still referenced in the repo.

